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Quantization of the Fractional Harmonic Oscillator in terms of 

Riesz Fractional derivatives 

By 

Ibrahim Moh’d Al Rawashdeh 

Supervisor 

Prof. Dr. Eqab M. Rabei 

Abstract 

 

Fractional Lagrangians and fractional Hamiltonians for systems containing Riesz 

fractional derivatives (RFDs) have been formulated. The Hamilton's equations of motion are 

derived. Besides, the Hamilton-Jacobi formulations for these corresponding systems have been 

developed using the canonical method. The relevant Hamilton–Jacobi function has been 

obtained. An example for the fractional harmonic oscillator is discussed. The traditional results 

are recovered for integer-order derivatives.  

The path integral quantization of the fractional harmonic oscillator using Riesz-Caputo fractional 

derivatives (RCFD) has been performed.  

A Lagrangian for a damped Harmonic oscillator has been proposed in terms of Riesz’s Fractional 

derivative, and the corresponding equation of motion has been obtained. 
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CHAPTER ONE 

Introduction  

 

1.1 Statement of the Problem 

 

  

Fractional Calculus is a field of applied mathematics that deals with derivatives and 

integrals of arbitrary orders (including complex orders), and their applications in science. The 

seeds of fractional derivatives were planted over 300 years ago. It has been applied to almost 

every field of science; including Fluid Flow, Probability and Statistics, Control Theory of 

Dynamical Systems, Chemical Physics, Optics, Signal Processing, Electrical Engineering, 

Electrochemistry, Biology, Biophysics, Mechanics, Mechatronics and all branches of physics 

[Kilbas et al. 2006]. 

Various applications of fractional calculus are based on replacing the time derivative in 

an evolution equation with a derivative of fractional order. The results of several recent 

researches confirm that fractional derivatives seem to arise for mathematical reasons and many 

important results were reported [Magine 2004].  Classical Mechanics is one of the fields where 

fractional calculus generalized the classical calculus and it has many important applications, 

including classical and quantum mechanics, field theory, and optimal control.  
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During the past few years a special attention has been devoted to the fractional variations 

and their applications which gained importance in studying fractional mechanics and 

understanding constrained dynamics, both at the classical and quantum level. This is because, it 

is not suitable for all systems containing internal damping to be described properly within the 

classical picture (using only integer-order time derivatives) since the canonical coordinates of 

such systems do not remain linearly independent and certain constraints appear among them. For 

these reasons fractional studies of the properties of the Lagrangian and Hamiltonian formalisms 

are considered. 

Fractional Lagrangians are constructed from classical Lagrangian by replacing the 

classical derivatives with chosen fractional derivatives and the fractional Euler–Lagrange 

equations are obtained as a result of a fractional variational’ procedure [Agrawal 2002]. The first 

attempt to find the fractional Lagrangian and Hamiltonian for a given dissipative system is due to 

[Riewe 1996, 1997].  Important contributions were obtained in the field of variational principles 

by [Klimek 2001, 2002], [Agrawal 2006, 2007], [Rabei et al. 2004, 2007A], [Baleanu 2004] and 

[Baleanu and Agrawal 2006].  

The fractional Hamilton–Jacobi formalism has been developed for quantizing constrained 

systems [Güler, 1992; Rabei, 1996; Rabei and Güler, 1992]. The equivalent Lagrangian method 

is used to obtain the set of Hamilton–Jacobi partial differential equations (HJPDEs) for 

constrained systems. A general solution of the set of HJPDEs of these systems has been 

proposed, so that the Hamilton–Jacobi function in configuration space has been obtained [Rabei 

et al. 2002]. 

The Euler–Lagrange equation and fractional Hamilton-Jacobi formulation for systems 

have been investigated for fractional discrete and continuous systems, mostly in terms of 

Riemann-Liouville (RL) and Caputo fractional derivatives [Rabei et al 2007] and [Rabei and 

Ababneh, 2008].  

The conventional calculus of variations for systems containing Riesz fractional 

derivatives (RFD) has been extended by [Agrawal 2007] and [Baleanu 2007]. For integer α, the 

Riesz derivatives agree with traditional definitions, when α is 1. the right derivative is equal to 

the left derivative. This is not the case for Riemann and Caputo fractional derivatives; the right 
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derivative is the negative of the left derivative. We have applied Riesz derivatives to fractional 

dynamics. This could give rise to opportunities in studying constrained systems, mainly because 

the Riesz derivative contains both the left and right derivatives. In addition, the fractional 

derivative of a function is given by a definite integrals, this depends on the values of the function 

over the entire interval. Therefore, fractional derivatives are suitable to model systems with long- 

range interactions in space and/or time.  

In this thesis, the definition of a Riesz fractional potential is used to define RFD's. Two 

definitions are possible for RFD's: one analogous to the Riemann–Liouville fractional derivative 

(RLFD), and the other analogous to the Caputo fractional derivative (CFD). In this respect, using 

the Riesz derivative, we propose to generalize the notion of equivalent Lagrangians and 

Hamiltonians for the fractional cases. Moreover, the Riesz Caputo fractional derivative will be 

used to construct the fractional Hamilton-Jacobi equations for systems using the canonical 

method. 

Quantization of the fractional harmonic oscillator FHO will be performed using a path-

integral method. Moreover, a new Lagrangian formulation for a damped harmonic oscillator will 

be derived. 

 

1.2 Motivation 

 

The formulation of the fractional Hamilton-Jacobi equation using Riesz fractional 

derivatives is an interesting issue to be investigated, not only because nobody has used these 

derivatives before to build Hamilton-Jacobi equations, but also for the unique properties of Riesz 

derivatives mentioned above.    

Another thing is to build a convincing fractional Lagrangian for a damped harmonic 

oscillator with RFD.  
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1.2 Synopsis of the Thesis 

 

The plan of this thesis is as follows: In Chapter One, a brief introduction to the fractional 

calculus and previous studies is presented. In Chapter Two, some basic formulas of fractional 

derivatives are reviewed.  

Chapter Three is divided to three sections: The first section contains a brief review of the 

fractional Lagrangian and fractional Hamiltonian approaches using Riesz fractional derivatives. 

The second one, fractional Hamilton-Jacobi formulation using Riesz fractional derivatives 

discusses. The third section, the fractional Harmonic Oscillator is solved using these formulation. 

Chapter Four has two main sections: The first is an introduction to path integrals. The 

second section presents the quantization of the fractional Harmonic Oscillator within the path 

integral method.  

Chapter Five contains the formulation a Lagrangian for the damped harmonic oscillator.   

Finally, Chapter Six consist of a general summary and a partial list of open problems. 
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CHAPTER Two 

              Fractional Derivatives 

 

Several definitions of a fractional derivative have been proposed, including the Riemann–

Liouville, the Grunwald–Letnikov, the Weyl, the Caputo, the Marchaud, the Riesz, the Miller 

and Ross fractional derivatives. In this chapter, we shall present the basic definitions and 

properties of Riemann-Liouville, Caputo and Riesz fractional integrals and derivatives.  

We begin with the left and right Riemann–Liouville fractional integrals of order α > 0 for a 

function q (t) in the finite interval [a, b] (-  < a < b < ) on the real axis  

The left Riemann-Liouville fractional (LRLF) integral reads 

                                      

The right Riemann-Liouville fractional (RRLF) integral reads  

                

where  denotes the Gamma function. 

The next step is to define the Riesz potential as was given in [Agrawal 2007]: 
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Equation (2.3) is called the Riesz potential or Riesz fractional integral, the limits going from 

 

From Eqs, (2.1) to (2.3) we conclude that 

 .                                                      

The left Riemann-Liouville fractional derivative (LRLFD) is defined as 

                 

while the right Riemann-Liouville fractional derivative (RRLFD) is defined as 

             

The fractional Riemann-Liouville derivatives have the following properties. The fractional 

derivative of a constant is not zero, namely; 

 = c . 

The RL derivative of a power of q has the following form: 

  =  .                                                                         

The Caputo derivative of fractional order of function q (t) is defined as: 

the left fractional derivative (LCFD): 

;                     

the right fractional derivative (RCFD); 
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where    n 1< α < n      

In contrast with the RL derivative, the Caputo derivative of a constant is zero; and for a 

fractional differential equation, defined in terms of Caputo derivatives, standard boundary 

conditions are well defined. 

For 0 < α < 1 we have the relation 

    ,                                                         

where D is the traditional derivative operator and α is the order of the derivative such that  

n − 1 < α < n. When α is an integer, the usual definition of a derivative is used. Note that for 

α = 1, the left derivative is the negative of the right derivative. 

Following the above analogy, we can represent the Riesz Riemann–Liouville fractional 

derivative, or simply the Riesz fractional derivative as (RFD), 

                

The Riesz-Caputo fractional derivative (RCFD) is defined as 

  

Using the above equations, we conclude  

                                       

and 
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Unlike Riemann–Liouville and Caputo fractional derivatives when α is 1, the right derivative of 

the Riesz fractional derivative is equal to the left derivative. Thus, for integer α, the Riesz 

derivatives defined above agree with traditional definitions of a derivative.  

From Eq. (2.13), the Riesz fractional derivative RFD of a constant is not zero, namely; 

 =   c (   -     ); 

while from Eq. (2.14), the Riesz Caputo fractional derivative RCFD for a constant is zero. 
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Chapter Three  

 

     Fractional Hamilton- Jacobi Equations 

Using Riesz Derivatives 

3.1 The Fractional Euler-Lagrange and Fractional Hamilton Equations 

with Riesz's Derivatives 

 

 Consider a fractional Lagrangian of the form = L  The corresponding 

Euler– Lagrange equations are given as [Agrawal 2007] 

                                                                 

Equation (3.1.1) represents the generalized Euler–Lagrange equation for the Fractional Calculus 

of Variation FCV problem defined in terms of the RCFD. We see that both RFD and RCFD 

automatically appear in the resulting Euler–Lagrange equation even when the Lagrangian 

function contains RCFD only [Agrawal 2007]. 

For a given fractional Lagrangian = L  the fractional canonical momentum is 

defined as 

 =   .                                                             

Then, the corresponding fractional Hamiltonian ( ) takes the form  
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=   .                                                               

Taking the total differential of Eq. (3.1.3), we obtain 

=         (3.1.4) 

Using again Eq. (3.1.1) and making use of Eq. (3.1.2), we get  

=                                                               

This means that the Hamiltonian is a function of the form = H (q, , t). Thus, the total 

differential of this function takes the form  

=                                                                               

Comparing Eq. (3.1.5) to Eq. (3.1.6), we get the fractional Hamilton’s equations: 

                                               (3.1.7) 

It is observed that the total time derivative of the fractional Hamiltonian can be written as 

 =       ,                                                        (3.1.8) 

which means that the fractional Hamiltonian is not a constant of motion, even though it is 

independent of time explicitly.  

3.2    Fractional Hamilton-Jacobi Formulation with Riesz's Derivatives 

          The Hamilton–Jacobi Equation (HJE) is another formulation of classical mechanics and it 

is  equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and 

Hamiltonian mechanics. The Hamilton–Jacobi Equation is particularly useful in identifying 

http://en.wikipedia.org/wiki/Classical_mechanics
http://en.wikipedia.org/wiki/Newton's_laws_of_motion
http://en.wikipedia.org/wiki/Lagrangian_mechanics
http://en.wikipedia.org/wiki/Hamiltonian_mechanics
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conserved quantities for mechanical systems, which may be possible even when the mechanical 

problem itself cannot be solved completely. 

The Hamilton-Jacobi Equation is enormously useful in solving analytically and numerically 

equations of motion for classical particles. The main reason for its usefulness is that it yields all 

constants of motion automatically and the solution itself becomes formulated in terms of those 

constants of motion. It is also the only formulation of mechanics in which the motion of a 

particle can be represented as a wave. For this reason, the HJE is considered the "closest 

approach" of classical mechanics to quantum mechanics. 

In this section, we formulate the Hamilton-Jacobi equation with Riesz fractional derivatives. In 

practice, the Hamilton–Jacobi technique becomes a useful computational tool only when a 

separation can be done. In general, coordinates  are said to be separable in the Hamilton–

Jacobi equations when Hamilton’s principal function can be split into two additive parts: one that 

depends only on the fractional derivatives of the generalized coordinates q; and another that is 

entirely independent of these derivatives. In the cases to which we shall apply the method of 

separation of variables, the Hamiltonian will be time-independent.  

Now, let us consider the canonical transformations with the generating function 

S . 

 The new Hamiltonian  will take the form  

(Q, , t) =   Q, ,                                      

where Q, P are the new canonical coordinates and  is the new Lagrangian.   

To get the relation between the old Hamiltonian  and the new one  both must obey 

Hamilton’s principle:  

     . 

To satisfy the variations of the following integrals, we must have 

http://en.wikipedia.org/wiki/Classical_mechanics
http://en.wikipedia.org/wiki/Quantum_mechanics
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 =                                                  

where the function F is given as 

F = S                                                    

Taking the total differential of F, we get 

 =      –    

=      –                                                        

Comparing Eq:   to Eq.  we obtain 

    +                                          

But S= S   Thus, taking the total time derivative of this function, we have      

   +   +                                                    

Comparing Eq:  to Eq , we obtain the Hamilton-Jacobi equations of motion:  

 ,                          

If the new variables (Q, ) are constants in time, then   = 0 (time- independent 

Hamiltonian). Then we obtain the Hamilton-Jacobi partial differential equation for fractional 

systems as 

 = 0.                                                                                     
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If  is constant, letting =E, then the action function S ( can be put in the 

form  

S= W (                                                                             

where W is called Hamilton’s characteristic function, and f (E, t) =−Et.  

 

Using Eq :  

                                                               

;                                                                  

=  E.                                                                                          

Now, we shall find the solution of Eq  to understand the physical meaning of W 

( ;  

   (  

       =                         

 Using Eq , we get  

 =           

which can be written as  
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W=                                                                               

which is just the Abbreviated action; defined as the integral of the generalized momentum along 

a path in the generalized coordinates without regard to its parameterization by time.  

 

 

 

3.3 The Fractional Harmonic Oscillator 

 

The Hamiltonian functions of the Fractional Harmonic Oscillator read:  

                                                   =  +  K  

Making use of Eq: (3.1.7), we obtain the corresponding fractional Hamilton’s equations of 

motion for the fractional harmonic oscillator using RCFD, which take the form 

                               (3.3.1) 

Then, we have 

                                                                (3.3.2) 

Substituting for   in Eq. (3.4.2), we obtain  

 + Kq = 0. 

Thus, the conventional result is recovered. 

http://en.wikipedia.org/wiki/Action_(physics)#Abbreviated_action_.28functional.29
http://en.wikipedia.org/wiki/Generalized_coordinates
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With Eq:  the fractional Hamilton-Jacobi equation (FH-JE) takes the form  

 +  

From Eq.   the above equation can be written as 

(  +       

which has the following solution 

W=  . 

Thus, the action function reads  

S=  . 

Using Eq,s. (3.2.10) and (3.2.11), we have 

=    

Thus, we get 

 

Taking the total time derivative of both sides, we have 

                                                               

Taking again the Riesz derivative of both sides and making use of Eq (3.3.1), we obtain 
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 =    

 

This is the same result as that obtained from the fractional Hamilton’s equation of motion Eq: 

(3.3.2). 
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Chapter Four 

        Path Integral Quantization 

 

In this chapter, the path integral method for quantization will be outlined using the 

classical action function. Then the method will be applied to the fractional Hamiltonian of a 

harmonic oscillator with Riesz Caputo fractional derivatives. 

 

4.1 Introduction to the Path Integral Formulation 

 

The basic difference between the classical and quantum mechanics is that in classical 

mechanic only a definite path contributes to the motion of the system; while in quantum 

mechanics all possible paths must play a role in the motion of the system (Feynman postulate 2): 

“The paths contribute equally in magnitude, but the phase of their contribution is the classical 

action S in units of the quantum of action ħ” [Feynman, 1965]. 

 = const , 

where the classical action S is defined by: 

S [q (t)] =                                                          (4.1) 

The total amplitude in going from  to is the sum of   over all paths 

K (     A (t)   ,            (4.2) 
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where A is a normalization factor whose value is independent of any individual path but 

depends only on time.  For a Lagrangian of the form  

L= m   - V (q, t), 

The normalization factor is [Feynman, 1965] 

A =  ;                                  

To perform the sum over all paths in Eq. (4.2), we divide the time interval ( ) into N 

intervals of length . In the limit , the sum becomes a multiple integral over all values of 

: 

K (b, a) =    …  

K (b, a) =                     

where  stands for … , and K(b, a) is called the propagator or the 

kernel of the motion. In fact, K (    is a wave function;   ). 

The phase space- path integral is given by  

K (    =                                    (4.3) 

where  

Dq =     and       .      
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4.2   Quantization of the Fractional Harmonic Oscillator 

 

The Hamiltonian and the path integral quantization of a system with Caputo fractional 

derivatives were developed by [Baleanu, Muslih and Rabei 2006]. A general formula for the 

path-integral quantization for non-conservative systems with RLFD and CFD was constructed by 

[Tarawneh, K. 2008].  

 

 In this section, the quantization of the fractional harmonic oscillator using Riesz-Caputo 

fractional derivatives (RCFD) will be carried out according to the path- integral method.  

For a fractional harmonic oscillator, the Hamiltonian reads  

 =  +  K    

With Eq. (4.2), the phase-space path integral of the fractional harmonic oscillator can be written 

as 

K [q(t)] = . 

Integrating over  using a Gaussian integral, and substitute k = , we obtain the space path 

integral   

K=  

Where  is nothing but the classical action function. 

Accordingly, the probability of going from point  at time  to at is 
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P (b, a) = . 

 

Chapter Five 

   A Lagrangian Formulation for a Damped 

Harmonic Oscillator Using RFD 

 

The construction of the Lagrangian and the Hamiltonian for the damped harmonic 

oscillator (DHO) is problematic because it leads to an explicitly time-dependent Lagrangian 

[Dekker 1981]. 

Riewe [Riewe, 1996 and 1997] tried to propose a Lagrangian for a damped harmonic oscillator 

using RLFD; but he committed a technical error; where, he considered the left RLFD is equal to 

the right RLFD. 

Recently, the Lagrangian and Hamiltonian formulations for DHO have been presented using 

CFD by [Tarawneh, K. 2008]. In his work, he used the symmetric fractional derivative for CFD 

presented in [Klimek 2001]. 

 By taking the limit b →   he considered that the LCFD and the RCFD of order (  ) are 

related as 

       q = ( , 

and from this consideration he built his Lagrangian for DHO. 
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In this chapter, we discuss the construction of the Lagrangian for a damped harmonic oscillator 

using Riesz fractional derivatives. 

Consider a Lagrangian of the form L (q, ,   ). 

One can show that the corresponding Euler-Lagrangian equation of motion reads   

                                                       (5.1)  

Now, we propose the following Lagrangian  

L=  +           

This gives the equation of motion for the Damped Harmonic Oscillator. Making use of Eq. (5.1), 

we obtain                                                              

 +   + Kq = 0.                                                                  (5.2) 

For 0 <  < 1 Eq,s.  and (2.14) become  

;                                                          

and 

                                                  

Using the relation between the Riemann-Liouville Fractional Derivatives and Caputo Fractional 

Derivatives for 0 <  < 1,   we have      
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 q  = q   ;                                                          

 q  = q   .                                                                 

For  =  , both Eq,s (5.5) and (5.6) become  

 q = q   ;                                                                        (5.7) 

 q = q   .                                                                       (5.8) 

Substituting Eqs. (5.7) and Eq. (5.8) in Eq. (5.3), we obtain  

  = , 

               =     (5.9) 

With Eq. (5.4) and the boundary conditions , 

Eq. (5.9) becomes 

  =           (5.10) 

Substituting Eq (5.10) in (5.2); 
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 +   + Kq = 0; 

 +   + Kq = 0,                                                                                                      (5.11) 

which is the equation of motion for a damped harmonic oscillator. 
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Chapter Six 

                          Conclusion 

 

6.1 General Summary 

 

During the last decades fractional calculus has become an alternative tool for solving 

several complex problems in various fields. The fractional derivative represents an operator 

which generalizes the ordinary derivative.  

In this work, we have presented definitions of the Riesz fractional integral (potential) and 

derivatives, and their properties. We have also defined the Riemann–Liouville and Caputo 

derivatives; as they are linked to Riesz fractional derivatives. Generalized Euler–Lagrange 

equations have been presented for fractional variational problems FVP defined in terms of Riesz 

and Riesz Caputo fractional derivatives. We note that both the RFD and the RCFD automatically 

appear in the resulting differential equations even when the functional contains only one of them 

(RCFD or RFD) [Baleanu 2007]. 

The Hamilton–Jacobi equation for systems containing RCFD has been constructed using the 

canonical method. The Hamilton–Jacobi functions have then been obtained by solving these 

equations. Finding this function enables us to get the solutions of the equations of motion. In 

order to test our formalism, and to get a somewhat deeper understanding, the fractional harmonic 

oscillator with Riesz- Caputo fractional derivatives is discussed. The result was found to be in 

exact agreement with the Lagrangian formulation given by [Agrawal 2002] and with the 

Hamiltonian formulation given by [Rabei et al. 2007]. 

The advantage of using the method presented in this thesis is that we can easily obtain the action 

function, which is an essential part in the path integral quantization for any mechanical fractional 

system. 
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A new formulation of the Lagrangian is derived for a damped harmonic oscillator using Riesz 

fractional derivatives, and the corresponding equation of motion is obtained.  

 

6.2 Open Problems 

  

The first problem is to obtain a general formula for fractional Poisson brackets using 

RFD and then perform the canonical quantization by using the commutation relation between 

momentum and space in the fractional form. 

The second one is to discuss the quantization of the Damped Harmonic Oscillator. 
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ةالكسريّ زري مشتقة بدلالة الكسري التوافقي للمتذبذب التكمية     

 إعداد 

 إبراهيم محمد الرواشدة

 الرقم الجامعي 0520402009

 إشراف

ربيععقا ب  د. .ٲ  

 

 ملخص

 

 في هذه الأطروحة، أعيد تعريف مشتقتي  ريمان- لويڤل  و كابوتو بما يرتبط مع المشتقة الكسرية لريز. 

وأعيدت صياغة اللغرانجيّة والهاملتونيّة  الكسريين في الأنظمة التي تحتوي  على  المشتقة الكسرية 

لريز. كما عرّفت معادلات هاملتون في الحركة بالمشتقة الكسرية نفسها،  بالإضافة إلى ذلك ، أنشئت 

 معادلة هاملتون- جاكوبي للأنظمة المحافظة التي تحتوي مشتقة ريز الكسرية .

شرح مثال توضيحي لهذه المعادلات، وطبقت هذه المعادلات على المتذبذب التوافقي البسيط. واستردت  

 النتائج الكلاسيكيّ ة لمعادلات الحركة.

جرى تكمية المذبذب التوافقي البسيط باستخدام المشتقة الكسرية لريز و ريز كابوتو وذلك بطريقة تكامل 

 المسار.

وأخيرا استطعنا الحصول على الصيغة  اللاغرانجيّة المكافئة  للنظام الذي يحوي قوة مبددّ ة.  وأوجدنا معادلة 

 الحركة لهذا النظام باستخدام مشتقة ريز الكسريّ ة. 

 


